
www.manaraa.com

Artif Intell Rev (2009) 31:101–117
DOI 10.1007/s10462-009-9129-2

Managing computer files via artificial intelligence
approaches

Xiaolong Jin · Jianmin Jiang · Geyong Min

Published online: 24 October 2009
© Springer Science+Business Media B.V. 2009

Abstract Agent-oriented computing has been regarded as a very promising methodology
to developing intelligent software systems. Intelligent agent technology has, thus, been
successfully applied in many industrial and commercial areas. Cased based reasoning (CBR)
is an effective and efficient analogical reasoning method for solving problems using the
knowledge of past experiences, which are stored in a knowledge base as cases. CBR has
been extensively employed to tackle such problems as design, planning, classification, and
advising in many different application fields. On the other hand, as various files are created
on computers, how to efficiently manage computer files becomes a significant issue. So far,
there are a number of file management systems available. However, none of them can deal
with these crucial problems of file management: Which files should be deleted after their
use? Which files should be temporarily kept or permanently preserved? To the best of our
knowledge, these problems have not yet been investigated in the open literature. To bridge
this gap, in this paper we explore the value of the above artificial intelligence approaches in
managing computer files. We develop an intelligent agent based personal file management
system, where CBR is employed to guide users to managing their files. Through extensive
practical experiments, we validate the effectiveness and efficiency of the developed system.

Keywords Intelligent agents · Multi-agent systems · Case based reasoning · Similarity
measurement · File management

X. Jin (B) · J. Jiang · G. Min
Digital Media and Systems Research Institute, School of Computing, Informatics and Media,
University of Bradford, Bradford BD7 1DP, UK
e-mail: x.jin@brad.ac.uk

J. Jiang
e-mail: j.jiang1@brad.ac.uk

G. Min
e-mail: g.min@brad.ac.uk

123

www.manaraa.com

102 X. Jin et al.

1 Introduction

Agent-oriented computing has been extensively regarded as a very promising methodology
to developing intelligent software systems, as this computing paradigm enables software
engineers to model applications in a natural way that resembles how humans perceive the
problem domains (Braubach et al. 2003; Chmiel et al. 2005; Jennings 2001). Particularly,
it has been shown that this computing paradigm is well suited to handle the complexity
of developing software in modern application scenarios (Zambonelli and Omicini 2004).
Therefore, Intelligent Agent Technology (IAT) has been successfully applied in many indus-
trial and commercial areas, including information retrieval and filtering, electronic com-
merce, human computer interaction, telecommunication systems, air traffic control, plan-
ning and scheduling, process control, manufacturing, workforce management, and military
(Luck et al. 2005).

When people face new problems, they often derive solutions based on their past experi-
ences with similar situations. Cased based reasoning (CBR) is exactly originated from this
problem solving pattern (Craw et al. 2006; Watson and Marir 1994). CBR implicitly hypoth-
esizes that “similar problems have similar solutions”. It is an effective analogical reasoning
method for solving problems using the knowledge of past experiences, which are stored in
a knowledge base as cases (Watson and Marir 1994). CBR is particularly useful in those
poorly understood or dynamically evolving domains, where knowledge is difficult to be
formalized (Glasgow et al. 2006). CBR has been widely adopted to solve the problems of
design, planning, classification, and advising in many different application fields, such as,
image processing (Khanum and Shafiq 2006; Perner 2002), molecular biology (Glasgow
et al. 2006), course timetabling (Burke et al. 2006), spam filtering (Delany and Bridge 2006),
and fault diagnosing (Iglesias et al. 2008; Pous et al. 2008; Ross et al. 2002).

Since the great invention, computers (e.g., desktops, laptops, PDAs) have gradually entered
people’s daily life and have already fundamentally changed the ways in which people live,
work, and play. Every day, various new files are created and stored on each computer. As
a consequence, two significant problems emerge: first, since there are too many electronic
files stored on computers, if they are not well managed, it will be very difficult for computer
users to find and use their desired files; second, the large number of computer files require
substantive storage space. However, although the capacity of consumer hard disks has been
increased from a few megabytes in 1980s to up to several thousand gigabytes nowadays,1

the storage space is still regarded as a scare resource. Therefore, how to efficiently manage
electronic files stored on computers so as to not only facilitate human users to use them, but
also save storage space is an important issue.

Thus far, besides the file management systems embedded in the commonly used operating
systems (e.g., Explore in Microsoft Windows), a lot of stand-alone file management systems
have been made available (Carlton 2005; Eder et al. 2000; Mahalingam et al. 2003; Wedde
et al. 1990; You et al. 2005). However, unfortunately, there are no file management systems
that are able to automatically deal with the following crucial problems of managing computer
files:

(1) Which files shall be deleted from computers after their use?
(2) Which files need to be temporarily remained for a period of time?
(3) Which files should be preserved permanently?

To fill this gap, this study intends to explore the value of artificial intelligence in man-
aging computer files. Specifically, we develop an intelligent agent based personalized file

1 http://www.pcguide.com/ref/hdd/histTrends-c.html.

123

http://www.pcguide.com/ref/hdd/histTrends-c.html

www.manaraa.com

Managing computer files 103

management system, which can automatically deal with the above problems by integrating the
IAT and CBR technologies. In this management system, intelligent software agents cooperate
and coordinate with each other to manage computer files such that they are deleted, temporar-
ily remained, or permanently preserved. As the key component of the system, a CBR-based
recommendation agent is engineered to recommend suitable actions on individual files using
the knowledge learned from the behaviors of human users.

The rest of the paper is organized as follows: In Sect. 2, the preliminaries and related
work are briefly introduced. Section 3 presents the architecture of the multi-agent based file
management system and describes the functionality of individual agents. In Sect. 4, we dis-
cuss the representation of cases and the similarity measurements on the attributes of different
cases. Section 5 presents the CBR recommendation agent and the case base management
agent, as well as their CBR mechanism. Specifically, the important issues of cases, namely,
retrieval, reuse, revision, retainment, and management, are investigated. We present our
experimental results to validate the application of the CBR mechanism to file management
in Sect. 6. Finally, Section 7 concludes the paper.

2 Preliminaries and related work

In this section, we briefly review the preliminaries and related work on intelligent agents and
multi-agent systems, CBR, and file management systems.

2.1 Intelligent agents and multi-agent systems

In the agent-oriented computing paradigm, intelligent agents are the fundamental building
blocks. An intelligent agent is an encapsulated software system that is situated in a dynami-
cally changing environment and is capable of flexible, autonomous action in that environment
in order to achieve its design objectives (Jennings 2000; Jennings et al. 1998). Particularly,
an agent possesses the following three important characteristics (Jennings 2001; Lind 2000;
Zambonelli and Omicini 2004):

– Autonomy An agent is not passively subject to a global, external flow of control in its
actions. In other words, an agent has its own internal execution activity. It is pro-actively
oriented to the achievement of a specific task.

– Situatedness An agent is always situated in a particular environment, no matter it is a
computational or a physical one, and it is able to sense and affect (portions of) such an
environment.

– Sociality Agents usually work in open operational environments hosting the execution of
a multiplicity of agents, possibly belonging to different stakeholders.

In multi-agent systems, the global behavior derives from the interactions among the con-
stituent agents. In fact, agents may communicate/coordinate/cooperate with each other (in a
dynamic way and possibly according to high-level languages and protocols) either to achieve
a common objective or because this is necessary for them to achieve their own objectives.
Therefore, it is the interactions among agents that make intelligent agents and multi-agent
systems a valuable metaphor in computing and make them attractive when they are adopted
to tackle complex application scenarios. Besides, dividing functionality among many agents
provides modularity, flexibility, modifiability, and extensibility.

Due to these appealing features, IAT has gained great success in many different applica-
tion domains. For instance, Hellingrath et al. (2009) investigated the application of IAT to

123

www.manaraa.com

104 X. Jin et al.

supply chain management. They analyzed the requirements on multi-agent systems used for
the supply chain management domain and further proposed a framework for the development
of such multi-agent systems. They designed and implemented common modules in order to
provide both sophisticated and generic basis for specific projects. Yang et al. (2008) devel-
oped a reactive multi-agent system for vehicle collision avoidance, where individual agents
interact with other agents and the obstacles situated in the environment using the so-called
physics-inspired behaviors. Collision avoidance in such a multi-agent system emerges as the
global result of the localized interactions among individual agents. In the age of information
economy, dynamic business alliance is a natural phenomenon of fierce competition in eco-
nomic globalization. Therefore, Sun et al. (2008) investigated the application of IAT in the
construction of dynamic alliance. They developed a framework for partner selection, contract
network based negotiating agreement, and negotiation process with resource constraints.

2.2 Case based reasoning

Generality speaking, a CBR system consists of a case base, a similarity function for measur-
ing the similarity between a new problem at hand and an existed case, some rules for case
retrieval and revision, and an algorithm for deriving solutions to new problems (Khoshgoftaar
et al. 2006). In a CBR system, a new problem is solved by investigating, matching, and reusing
solutions to similar cases that have been previously solved. At the highest level of generality,
CBR can be formalized as a four-step procedure (see Fig. 1):

(1) Retrieve Given a new problem, retrieve cases from the case base, which are similar to
this problem to a certain extent.

(2) Reuse Investigate the solutions of the retrieved similar cases to derive a solution to the
new problem.

(3) Revise Test the solution to the new problem and revise it, if necessary, using predefined
revision rules or heuristics.

(4) Retain After the solution has been successfully adapted to the new problem, decide
whether or not to store the new problem and its solution into the case base as a new case.

Input

Output

Case Base

Proposed
Solution

New
Problem

Revise

Retain

Similar
Cases

Confirmed
Solution

Retrieve

ReuseNew Case

Fig. 1 A schematic diagram of a Cased Based Reasoning system and its four-step procedure

123

www.manaraa.com

Managing computer files 105

By retaining new cases, a CBR system is able to learn new knowledge throughout its life
cycle (Burke et al. 2006).

Similar to IAT, CBR has also been successfully applied into many application fields. For
example, Burke et al. (2006) developed a CBR system for scheduling educational courses,
where past high-quality timetables are stored in a case base to help produce future timeta-
bles efficiently. In this system, the case base is organized as a decision tree. The retrieval
process chooses those cases that are graph isomorphic to the new case in their sub-attributes.
Spam filtering is a challenging issue for email server systems. CBR was employed to filter
unsolicited bulk messages in Delany and Bridge (2006); Delany et al. (2005). Specifically,
the authors developed a system called E-mail Classification Using Examples (ECUE), where
two CBR-based alternatives, feature-based and feature-free, are invented. As determining
the three-dimensional structure of a protein is an important step towards understanding its
biological function, Glasgow et al. (2006) developed a CBR system to predict the structures
of news proteins from their contact maps based on the detailed knowledge of the chemical
and physical properties of proteins. CBR was also adopted for the software fault prediction
problem in Khoshgoftaar et al. (2006). In more detail, a CBR system was developed as a
software fault prediction model to quantify the expected number of faults in a module under
development based on similar modules that have been previously developed.

2.3 File management systems

As we have mentioned previously, so far lots of stand-alone file management systems have
been made available in the open literature for either general or specialized purposes (Carlton
2005; Eder et al. 2000; Mahalingam et al. 2003; Wedde et al. 1990; You et al. 2005). For
instance, a multimedia document filing system was invented to support more effective con-
ceptual-based or content-based document retrieval in Fan et al. (1997). In this system, a
document type hierarchy model is developed to identify document types by analyzing lay-
out, conceptual, and content structures. A user-defined folder organization is employed to
store frame instances and the high level conceptual information of documents. Finally, a
storage architecture is presented to integrate the document type hierarchy model, the folder
organization, and the original document storage as a three level storage system. In order
to assure that deleted files are completely erased from storage devices, Joukov and Zadok
(2005) designed a file system extension, called Purgefs, which transparently overwrites files
on the per-deletion basis. A personal file management system was developed, which can
provide transparent and reliable access to personal files distributed on different file servers
in Mutka and Ni (1992). Besides, as recognizing that the simple hierarchical name space
of existing file systems is not efficient in managing nowadays computer files that have rich
semantics, Mahalingam et al. (2003) invented and implemented a novel archival file system,
namely, Sedar, which can store, manage, and retrieve computer files in a semantic manner.
Unfortunately, to the best of our knowledge, none of the available file management systems
can deal with the crucial problems mentioned in the previous section.

3 A multi-agent system for managing computer files

In this paper we refer file management to the decision making on whether to delete, keep,
or preserve computer files. We will not consider such issues as how to efficiently classify
and organize files according to their specific contents, where and how to store files such that

123

www.manaraa.com

106 X. Jin et al.

CBR-Base
Recommendati

on Agent

File Storage

Case Base
Management

Agent

Monitoring
Agent

Metadata
Extraction

Agent

Content
Analysis

Agent

Case
Base

File Manag.
Agent

User

File
Buffer

Fig. 2 A schematic diagram of the multi-agent based personal file management system

they can be readily accessed. All of such issues are beyond the scope of this paper. In Fig. 2,
we present a schematic diagram of the multi-agent system that we have developed to man-
age computer files. In what follows, we will briefly introduce the functionality of individual
agents involved in this system.

3.1 Human user/file management agent

The human user or the file management agent is responsible for managing computer files
stored in the storage space that can be a logical disc driver or a file directory. The human user
or the file management agent can consult the CBR-based recommendation agent on whether
a file at hand should be deleted, kept, or preserved. If the human user is operating the system,
She/he will make the final decision. In this case, if the user’s final decision is different from
the recommendation made by the CBR recommendation agent, the multi-agent system will
learn from this situation. However, if it is the file management agent that is responsible for the
whole system, it will usually accept the recommendation made by the CBR recommendation
agent.

3.2 Monitoring agent

This agent monitors the actions of the human user or the file management agent on computer
files and notifies its final decisions (i.e., delete, keep, or preserve) on files to the case base
management agent. The monitoring agent is also responsible for temporarily copying the
files under consideration into the preassigned file buffer for the feature extraction agent and
the content analysis agent, which will extract the features of individual files and analyze their
contents, respectively. After the extraction, those files will be removed from the file buffer.

3.3 Metadata extraction agent

This agent is designed to extract detailed metadata (e.g., size, type, and creation time) of indi-
vidual files that have been temporarily put into the file buffer. The extracted metadata will be
used by the CBR recommendation agent as the foundation to make suitable recommendation.

123

www.manaraa.com

Managing computer files 107

3.4 Content analysis agent

The functionality of this agent is to extract and analyze the specific contents of computer
files. At the present system, this agent works only on document files. It can extract their
textual contents and lexically analyze them to obtain a list of keywords.

3.5 Case base management agent

A case base is provided to support the recommendation of the CBR mechanism, where the
detailed information of deleted and preserved files is stored as past cases. Note that the files
that are determined to be temporarily kept are not stored in the case base. The case base
management agent is in charge of the case base. Specifically, it is responsible for storing new
cases into the case base, retrieving existing cases based on certain criteria, and filtering cases
whose performance cannot meet certain predefined requirements. Besides, this agent acts as
the supporter of the CBR recommendation agent.

3.6 CBR recommendation agent

This agent employs the CBR mechanism to make suitable recommendation on deleting,
keeping, or preserving computer files. It relies on the similar cases provided by the case base
management agent and the new case to make suitable recommendation.

In Algorithm 1, we present the detailed procedure of the file management system for
managing computer files.

4 Case representation and similarity measurements

In order to employ the CBR mechanism to manage computer files, how to represent cases and
how to measure the similarity between the attributes of cases are two fundamental technical
issues, which will be discussed in this section.

4.1 Case representation

Generally speaking, a case represents knowledge about a particular problem solving experi-
ence and hence includes a problem description, a solution to the problem, and the feedback,
if available, on the success of the solution (Glasgow et al. 2006). More specifically, a case
is usually represented by a list of attribute-value pairs that represent the values of different
attributes of the original problem. In our CBR system, each case actually corresponds to a
computer file that has been deleted or deemed for preservation. A case consists of three types
of attributes, namely, descriptive attributes, solution attribute, and performance attributes.
Figure 3 presents a complete list of attributes used for representing cases.

4.1.1 Descriptive attributes

The descriptive attributes of a case refer to those attributes that represent the detailed infor-
mation, including metadata and contents, of the corresponding file. Figure 3 itemizes all
descriptive attributes. Note that in this study the keyword set, kwd , of a case is defined as an

123

www.manaraa.com

108 X. Jin et al.

Algorithm 1 The procedure of the agent-based personal file management system for man-
aging computer files
Require: Given a set of files, F, the file management system is required to recommend suitable actions

(delete, keep, or preserve) on individual files.
1: for each file f in F do
2: The monitoring agent copies f to the file buffer;
3: The metadata extraction agent extracts all required metadata from f and submits to the CBR-based

recommendation agent and the case base management agent;
4: The content analysis agent analyzes the contents of f to obtain its keywords, and finally submits to the

CBR-based recommendation agent and the case base management agent;
5: The monitoring agent removes f from the file buffer;
6: Taking the metadata and keywords of f as a new case, the case base management agent retrieves a set,

�, of similar cases from the case base and submits to the CBR recommendation agent;
7: Based on the solutions of the similar cases, the CBR recommendation agent recommends an action on

the new case to the human user or the file management agent. This step may be repeated, if necessary;
8: The human user or the file management agent makes the final decision on f based on the recommendation

from the recommendation agent and performs the selected action finally;
9: The monitoring agent monitors the final action on file f and informs it to the CBR recommendation

agent and the case base management agent;
10: if the final decision is the same as its recommendation then
11: The CBR recommendation agent simply discards the metadata and keywords of f ;
12: else
13: The CBR recommendation agent integrates the metadata and keywords of f and the final decision

as a new case;
14: The case base management agent stores the new case into the case base;
15: end if
16: for each case FX in � do
17: Increase its recommendation counter by one;
18: if the solution in FX is the same as the final decision of the human user or the file management agent

on file f then
19: Increase its correct recommendation counter by one;
20: else
21: Increase its incorrect recommendation counter by one;
22: end if
23: end for
24: end for

ordered set. The higher the order of a keyword in kwd , the better it can be used to describe
the contents of the case.

4.1.2 Solution attributes

Figure 3 shows that there are two attributes in a case for representing its solution. Specifically,

(1) Final action act records the final decision made by the human user or the file manage-
ment agent on the corresponding file. As aforementioned, the final action attribute of a
case has three possible values, namely, delete, keep, and preserve.

(2) Action time f at refers to the specific time when the final action is performed on the
file.

4.1.3 Performance attributes

Unlike the above two types of attributes, the performance attributes of a case is a set of
attributes that indicate the performance of this case on recommending suitable solutions to

123

www.manaraa.com

Managing computer files 109

Fig. 3 The descriptive attributes,
solution attribute, and
performance attributes
for representing cases

new problems. In the file management system, there are three performance attributes for
each case:

(1) Total recommendations trd is a counter that counts the total times when this case is
retrieved as a similar one to the case at hand based on a predefined similarity function.

(2) Correct recommendations crd is also a counter for recording the times when the case
successfully recommends a final solution to a new case. In other words, the recom-
mended action for a file is the same as the final action taken by the human user or the
file management agent.

(3) Incorrect recommendations ird counts the times when the case fails to predict the final
solution of a new case. In other words, the recommended action for a file is different
from the final action taken by the human user or the file management agent.

4.2 Similarity measurements

Given a file, f , in order to recommend a suitable action on it, the case base management
agent will take it as a new case and then retrieve the n nearest neighboring cases from the
case base, whose descriptive attributes are most similar to those of file f . In doing so, the
key is to measure the similarity between the corresponding attributes of different cases. Note
that for all similarity measurement we normalize them into a value in [0, 1]. The larger the
similarity value, the more similar the two cases. Later on, we suppose FA and FB be two
cases for measuring the similarity between their attributes and denote a certain attribute x of
a case FX as F x

X .

4.2.1 Similarity on file types

We use a tree structure to organize various types of computer files. Figure 4 presents a
schematic diagram of the tree structure. It can be noted that the highest level (i.e., the root) of

123

www.manaraa.com

110 X. Jin et al.

Fig. 4 A tree structure model
of file types

All File Types

Document

Plain Text

Formatted Text

Image

Vector

Raster

Audio

Lossy

Lossless

Video

Others

the tree structure is the full set of all file types. At the second highest level, files are classified
into five types, namely, document, image, audio, video, and others. Each type has several
subtypes or a sub-tree structure. For instance, image files can be classified into two subtypes,
namely, raster format images and vector format images. Further, raster images have different
formats, such as, bmp, tif, tiff, jpeg, jpg, mng, and psd. Similarly, vector images have also a
serious of formats, namely, svg, ps, wmf, swf, etc. Let Ftp f

A and Ftp f
B be the type attribute of

cases FA and FB , respectively. Ftp f
A and Ftp f

B are two leaf nodes in the above tree structure

of file types. Let π be the closest common ancestral node of Ftp f
A and Ftp f

B . Next, we can

define the similarity Ftp f
A and Ftp f

B as follows:

– If π is a leaf node, then Ftp f
A = Ftp f

B = π . Hence, we have S(Ftp f
A , Ftp f

B) = 1;

– If π is the root node, S(Ftp f
A , Ftp f

B) = 0;
– Otherwise,

S(Ftp f
A , Ftp f

B) = 2−(max{step(Ftp f
A),step(Ftp f

B)}−step(π)), (1)

123

www.manaraa.com

Managing computer files 111

where step(x) is a function for counting the steps from the root of the tree structure of
file types to its offspring node, x .

4.2.2 Similarity on file sizes

Generally speaking, the sizes of files of different types are significantly different. For exam-
ple, a video file is usually up to several hundred megabytes, while a document file is often
about several hundred kilobytes. This fact should be considered in measuring the similarity
of file sizes. Let Fsz f

A and Fsz f
B be the size attribute of cases FA and FB , respectively. We

can define the corresponding similarity measure as follows:

S(Fsz f
A , Fsz f

B) =
{

1 − 1
α

·
∣∣∣Fsz f

A − Fsz f
B

∣∣∣, if Ftp f
A = Ftp f

B ,

0, otherwise,
(2)

where α = maxFX ∈ℵ Fsz f
X − minFY ∈ℵ Fsz f

Y and ℵ is the set of cases in which we have ∀FZ ,

Ftp f
Z = Ftp f

A = Ftp f
B .

4.2.3 Similarity on binary descriptive attributes

As we have noticed in the previous subsection, there are four binary descriptive attributes
for each case, namely, {ih f, ir f, is f , i t f }. The similarities between these binary attributes
of two cases can be readily measured. Let Fbda

A and Fbda
B be the values of a certain binary

descriptive attribute of cases FA and FB , respectively. The corresponding similarity can be
calculated as

S
(

Fbda
A , Fbda

B

)
= 1 −

∣∣∣Fbda
A − Fbda

B

∣∣∣ . (3)

4.2.4 Similarity on time related descriptive attributes

In the case representation, we have three time related descriptive attributes, namely,
{crt, lat, lmt}, to characterize cases. Let Ftra

A and Ftra
B be the values of a time related

attribute corresponding to cases FA and FB , respectively. The similarity measure can be
defined as follows:

S (
Ftra

A , Ftra
B

) = 1 − 1

β
·
∣∣∣(F f at

A − Ftra
A

)
−

(
F f at

B − Ftra
B

)∣∣∣, (4)

where β = maxFX ∈ℵ
(

F f at
X − Ftra

X

)
− minFY ∈ℵ

(
F f at

Y − Ftra
Y

)
and ℵ denotes the case

base.

4.2.5 Similarity on the keywords of files

Let Fkwd
A = {k1

A, k2
A, . . . , k NA

A } and Fkwd
B = {k1

B , k2
B , . . ., k NB

B } be the ordered sets of key-
words corresponding to cases FA and FB , respectively, where NA and NB are the numbers
of keywords of FA and FB . We measure the keywords similarity between FA and FB as
follows:

123

www.manaraa.com

112 X. Jin et al.

S(Fkwd
A , Fkwd

B) = 1

max{NA, NB} ×
κ=ki

A=k j
B∑

κ∈Fkwd
A ∩Fkwd

B

{
1 − |i − j |

max{NA, NB}
}
, (5)

where κ is a common keyword in Fkwd
A and Fkwd

B and i and j are its orders in these two
keyword sets, respectively. Obviously, Eq. 5 fully takes into account the orders of individual
keywords in the corresponding keyword sets. Particularly, this similarity measure has the
following properties:

– If Fkwd
A = ∅, Fkwd

B = ∅, or Fkwd
A ∩ Fkwd

B = ∅, S (
Fkwd

A , Fkwd
B

)
is minimized to zero.

– If Fkwd
A = Fkwd

B �= ∅, S (
Fkwd

A , Fkwd
B

)
is maximized to one.

– Otherwise, S (
Fkwd

A , Fkwd
B

) ∈ (0, 1).

5 CBR procedure in managing computer files

In this section, we discuss the key steps related to the application of CBR to file management.

5.1 Case retrieval

Case retrieval is actually to retrieve n nearest neighboring cases from the case base, which
are similar to the new problem at hand, using a predefined similarity function. There are quite
a few functions available for measuring the similarity between two vectors, such as, Man-
hattan distance, Euclidean distance, and Mahalanobis distance (Khoshgoftaar et al. 2006).
In our study, we employ the Manhattan distance, namely, the weighted summation of the
similarities of all descriptive attributes as the function for measuring the similarity between
two cases, namely,

S (FA, FB) = 1

|�|
∑
x∈�

wx · S (
F x

A, F x
B

)
, (6)

where � is the full set of descriptive attributes; wx is the weight of the descriptive attribute
x , which indicates its relative importance as compared to other descriptive attributes in �;
S (

F x
A, F x

B

)
is the similarity between the descriptive attribute x of cases FA and FB .

5.2 Case reuse and revision

Given the new case FA, after the n nearest neighboring cases have been retrieved out from
the case base, they will be classified into two groups according to their final action attri-
butes. Suppose � be the set of n nearest neighboring cases. Let �d and �p be the subsets
of �, whose elements have delete and preserve as their final action attributes, respec-
tively. Therefore, we have �d ∪ �p = � and |�d | + |�p| = n. Next, the CBR system can
recommend a final action for the new case FA as follows:

Fact
A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

delete, if
∑

FB∈�d

Fcrd
B

Ftrd
B

− ∑
FB∈�p

Fcrd
B

Ftrd
B

> µ,

preserve, if
∑

FB∈�p

Fcrd
B

Ftrd
B

− ∑
FB∈�d

Fcrd
B

Ftrd
B

> ν,

keep, otherwise,

(7)

123

www.manaraa.com

Managing computer files 113

where Fcrd
B /Ftrd

B is the ratio of the number of correct recommendations to that of the total
recommendations of the case FB and is thus called correct recommendation rate; µ and ν

are positive constants indicating the preference of the file management system to deleting
and preserving files, respectively. The smaller the value of µ (ν), the higher the preference
of the system to delete (preserve) files.

In our CBR system, case revision mainly concerns the performance attributes of cases
stored in the case base. After the final decision on a new case has been made and the corre-
sponding action has been performed, the performance attributes of the n nearest neighboring
cases in � that have been retrieved from the case base will be updated. Specifically, the
update will be carried out as follows:

(1) For all cases contained in �, increase their total number of recommendations by one;
(2) If the final decision on the new case FA is delete, increase the correct and incor-

rect recommendation counters of the cases contained in �d and �p by one, respec-
tively;

(3) If the final decision on the new case FA is preserve, increase the correct and incor-
rect recommendation counters of the cases contained in �p and �d by one, respec-
tively.

5.3 Case retainment and management

Let F̂act
A be the final action that is taken by the human user or the file management agent on

the new case FA. If F̂act
A is different from the action Fact

A recommended by the CBR agent,
the new case FA and the corresponding final action F̂act

A will be retained into the case base.
Moreover, the three performance attributes of FA will be initialized to zero and the current
time of the system will be taken as its action time F f at

A .
In order to enable the CBR agent to work efficiently, we need to maintain the case base

in a manageable scale. For this reason, the case base is regularly examined so as to remove
the cases with a high incorrect recommendation rate. Here, incorrect recommendation rate
is defined as the ratio of the number of incorrect recommendations of an existing case to
its total number of recommendations. Specifically, we set a threshold τ for the incorrect
recommendation rate. Only those cases with an incorrect recommendation rate less than τ

will be kept. All other cases will be removed from the case base.

6 Performance validation

In order to validate the developed multi-agent based file management system and, particu-
larly, the effectiveness and efficiency of the CBR mechanism in file management, we have
carried out extensive experiments. In this section, we present the experimental results. In
our experiments, we first created 215 cases and stored them into the case base. These cases
corresponded to two groups of deleted and preserved computer files, respectively. They were
further categorized into five types, namely, document, image, audio, video, and others. Next,
the file management system was employed to recommend suitable actions on another group
of 287 files.

In Tables 1, 2, 3, 4, and 5, we present the experimental results corresponding to different
file types, respectively. For each file type, the numbers of recommendations corresponding
to the three actions, delete, keep, and preserve, are listed. For each action, the num-
bers and rates of the correct and incorrect recommendations are also provided. The bottom

123

www.manaraa.com

114 X. Jin et al.

Table 1 The statistic results of the recommendations made by the CBR mechanism on document files

Action Number Correct recommendation Incorrect recommendation

Number Rate (%) Number Rate (%)

delete 15 10 67 5 33

preserve 18 11 61 7 39

keep 21 15 71 6 29

Total 54 36 67 18 33

Table 2 The statistic results of the recommendations made by the CBR mechanism on image files

Action Number Correct recommendation Incorrect recommendation

Number Rate (%) Number Rate (%)

delete 9 7 78 2 22

preserve 13 8 62 5 38

keep 28 20 71 8 29

Total 50 35 70 15 30

Table 3 The statistic results of the recommendations made by the CBR mechanism on audio files

Action Number Correct recommendation Incorrect recommendation

Number Rate (%) Number Rate (%)

delete 27 19 70 8 30

preserve 20 9 45 11 55

keep 38 25 66 13 34

Total 85 53 62 32 38

row in each table summarizes the total number of recommendations, as well as the rates
and numbers of the correct and incorrect recommendations on the corresponding file type.
The rates of the correct recommendations corresponding to the three actions on different file
types are also graphically presented in Fig. 5. From Tables 1, 2, 3, 4, 5 and Fig. 5 we can
note that for the ordinary file types (i.e., document, image, audio, video), the agent-based file
management system can provide fairly accurate recommendations, whilst for other file types
the performance of the system is not good. This is due to the significant differences between
the existing cases and new files under consideration, although they were all categorized as
other file types.

Table 6 presents the total numbers of recommendations corresponding to the three actions
on all file types. The numbers and rates of the correct and incorrect recommendations of each
action on all file types are also summarized. It can be found from the last row that the total
number of recommendations is 287; the number and rate of correct recommendations made
by the CBR-based recommendation agent are 184 and 64%, respectively. That is to say, the
developed system is fairly effective in recommending suitable actions on various types of
files.

123

www.manaraa.com

Managing computer files 115

Table 4 The statistic results of the recommendations made by the CBR mechanism on video files

Action Number Correct recommendation Incorrect recommendation

Number Rate (%) Number Rate (%)

delete 10 6 60 4 40

preserve 15 11 73 4 27

keep 31 23 74 8 26

Total 56 40 71 16 29

Table 5 The statistic results of the recommendations made by the CBR mechanism on other file types

Action Number Correct recommendation Incorrect recommendation

Number Rate (%) Number Rate (%)

delete 8 3 38 5 62

preserve 16 7 44 9 56

keep 18 10 56 8 44

Total 42 20 48 22 52

67

78
70

60
65

61 62

7371 71
66

74
6867 70

62
71

6470

80

90
delete preserve keep Average

60

38

61

45 44

5656
48

30

40

50

60

0

10

20

Document Image Audio Video Others All

Fig. 5 The rates of the correct recommendations made by the CBR agent for different file types

Table 6 The statistic results of the recommendations made by the CBR mechanism on all file types

Action Number Correct recommendation Incorrect recommendation

Number Rate (%) Number Rate (%)

delete 69 45 65 24 35

preserve 82 46 56 36 44

keep 136 93 68 43 32

Total 287 184 64 103 36

123

www.manaraa.com

116 X. Jin et al.

7 Conclusion

As two promising artificial intelligence approaches, both IAT and CBR have been success-
fully applied in many different industrial and commercial domains. On the other hand, since
computers have been more and more deeply involved in people’s daily life, computer users
are facing a progressively serious problem, namely, how to efficiently management computer
files so as to not only facilitate themselves to use computer files, but also save the scare storage
resource. However, although there are a lot of file management software tools available so
far, none of them is able to address these crucial problems on file management: Which files
should be immediately deleted after their use? Which files should be temporarily remained?
Which files need to be permanently preserved? To the best of our knowledge, these issues
have not yet been investigated in the open scientific literature.

To fill this gap, in this paper we explored the application of the artificial intelligence
approaches to automatic file management. We presented a multi-agent based system for per-
sonal file management, where CBR is employed to recommend suitable actions on different
files based on the experience knowledge learned from computer users’ behaviors on man-
aging files. Specifically, we introduced the architecture of the management system and the
functionality of individual software agents. We studied the key issues of applying CBR to file
management, namely, case representation, retrieval, reuse, revision, retainment, and manage-
ment. Through a set of experiments and the corresponding results, we finally validated the
effectiveness and efficiency of the developed file management system and the CBR mech-
anism on file management. We observed that the developed system can well recommend
suitable actions on various computer files. In the future, we will examine the potential cor-
relation among different descriptive attributes of cases so as to make the case representation
more efficient. We will also explore other potential functions for measuring the similarity
between different cases.

Acknowledgement This work is supported by the Seventh Framework Programme of the European Union
under grant (FP7-ICT-216746).

References

Braubach L, Lamersdorf W, Pokahr A (2003) Jadex: implementing a BDI-infrastructure for JADE agents.
EXP—In Search of Innovation 3(3):76–85

Burke EK, MacCarthy BL, Petrovic S, Qu R (2006) Multiple-retrieval case-based reasoning for course timet-
abling problems. J Oper Res Soc 57:148–162

Carlton GH (2005) A critical evaluation of the treatment of deleted files in microsoft windows operation
systems. In: Proceedings of the 38th Hawaii international conference on system sciences (HICSS’05),
pp 1–8

Chmiel K, Gawinecki M, Kaczmarek P, Szymczak M, Paprzycki M (2005) Efficiency of JADE agent platform.
Sci Progr 13(2):159–172

Craw S, Wiratunga N, Rowe RC (2006) Learning adaptation knowledge to improve case-based reasoning.
Artif Intell 170(16–17):1175–1192

Delany SJ, Bridge D (2006) Textual case-based reasoning for spam filtering: a comparison of feature-based
and feature-free approaches. Artif Intell Rev 26(1–2):75–87

Delany SJ, Cunningham P, Coyle L (2005) An assessment of case-based reasoning for spam filtering. Artif
Intell Rev 24(3–4):359–378

Eder J, Krumpholz A, Biliris A, Panagos E (2000) Self-maintained folder hierarchies as document reposito-
ries. In: Proceedings of the international conference on digital libraries: research and practice (ICDL’00),
pp 400–407

Fan X, Liu Q, Ng PA (1997) A multimedia document filing system. In: Proceedings of the IEEE international
conference on multimedia computing and systems (ICMCS’97), pp 492–499

123

www.manaraa.com

Managing computer files 117

Glasgow J, Kuo T, Davies J (2006) Protein structure from contact maps: a case-based reasoning approach.
Inf Sys Front 8(1):29–36

Hellingrath B, Bohle C, van Hueth J (2009) A framework for the development of multi-agent systems in sup-
ply chain management. In: Proceedings of the 42nd Hawaii international conference on system sciences,
pp 1–9

Iglesias R, Ares F, Ferneindez-Delgado M, Rodriguei JA, Bregains J, Barrol S (2008) Element failure detection
in linear antenna arrays using case-based reasoning. IEEE Antennas Propag Mag 50(4):198–204

Jennings NR (2000) On agent-based software engineering. Artif Intell 117(2):277–296
Jennings NR (2001) An agent-based approach for building complex software systems. Commun ACM

44(4):35–41
Jennings NR, Sycara K, Wooldridge M (1998) A roadmap of agent research and development. Auton Agents

Multi-Agent Sys 1(1):7–38
Joukov N, Zadok E (2005) Adding secure deletion to your favorite file system. In: Proceedings of the 3rd

IEEE international security in storage workshop (SISW’05)
Khanum A, Shafiq MZ (2006) Facial expression recognition system using case based reasoning. In: Proceed-

ings of the 2006 international conference on advances in space technologies, pp 147–151
Khoshgoftaar TM, Seliya N, Sundaresh N (2006) An empirical study of predicting software faults with case-

based reasoning. Softw Qual J 14(2):85–111
Lind J (2000) Issues in agent-oriented software engineering. In: Proceedings of the first international workshop

on agent-oriented software engineering (AOSE 2000), pp 45–58
Luck M, McBurney P, Shehory O, Willmott S (2005) Agent technology: computing as interaction (A Roadmap

for Agent Based Computing). AgentLink
Mahalingam M, Tang C, Xu Z (2003) Towards a semantic, deep archival file system. In: Proceedings of the

9th IEEE workshop on future trends of distributed computing systems (FTDCS’03), pp 115–121
Mutka MW, Ni LM (1992) Managing personal files across independent file management units. In: Proceedings

of the 3rd workshop on future trends of distributed computing systems, pp 254–261
Perner P (2002) Are case-based reasoning and dissimilarity-based classification two sides of the same coin?.

Eng Appl Artif Intell 15(2):193–203
Pous C, Caballero D, Lopez B (2008) Diagnosing patients combining principal components analysis and

case based reasoning. In: Proceedings of the 8th international conference on hybrid intelligent systems
(HIS’08), pp 819–824

Ross S, Fang L, Hipel KW (2002) A case-based reasoning system for conflict resolution: design and imple-
mentation. Eng Appl Artif Intell 15(3–4):369–383

Sun H, Wang W, Li Y, Huang T (2008) Dynamic business alliance and its construction based on multi-agent
system. In: Proceedings of the 4th international conference on wireless communications, networking and
mobile computing (WiCOM’08), pp 1–5

Watson I, Marir F (1994) Case-based reasoning: a review. Knowl Eng Rev 9(4):355–381
Wedde HF, Korel B, Brown WG, Chen S (1990) Distributed management of replicated and partitioned files

under DRAGON SLAYER. In: Proceedings of the 14th annual international computer software and
applications conference (COMPSAC’90), pp 436–441

Yang S, Gechter F, Koukam A (2008) Application of reactive multi-agent system to vehicle collision avoidance.
In: Proceedings of the 20th IEEE international conference on tools with artificial intelligence (ICTAI’08),
pp 197–204

You LL, Pollack KT, Long DDE (2005) Deep store: an archival storage system architecture. In: Proceedings
of the 21st international conference on data engineering (ICDE’05), pp 804–815

Zambonelli F, Omicini A (2004) Challenges and research directions in agent-oriented software engineering.
Auton Agents Multi-Agent Sys 9(3):253–283

123

www.manaraa.com

Copyright of Artificial Intelligence Review is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

